The T-violating Effective Chiral Lagrangian

Will Hockings

University of Arizona

Outline of Talk

- 1. Introduction
 - a) QCD $\bar{\theta}$ term and chiral symmetry
 - b) Eliminating spurious terms
 - c) Other QCD sources of T violation
- 2. T violation from $\bar{\theta}$ term
 - a) Pions only
 - b) Pions + nucleons
- 3. T violation from quark EDM and chromo-EDM
- 4. Conclusions/Outlook

QCD $\bar{\theta}$ term and Chiral Symmetry

QCD Lagrangian (two quark flavors)

$$\mathcal{L}_{QCD} = \bar{q}i \not \!\! D q + \ldots + \frac{\bar{\theta}g_s}{32\pi^2} \varepsilon_{\mu\nu\rho\sigma} Tr(G^{\mu\nu}G^{\rho\sigma})$$

Perform chiral rotation on q, then $\bar{\theta}$ term becomes

$$\mathcal{L}_{T,\bar{\theta}} = \bar{\theta}\bar{q}(m_* + \tilde{m}\tau_3)i\gamma_5q$$

$$m_* = \frac{m_u m_d}{m_u + m_d} \qquad , \qquad \tilde{m} = f(m_u, m_d)$$

Problem: τ_3 part generates terms in low energy EFT that cause vacuum instability

One solution: impose vacuum stability at quark

level \Rightarrow No τ_3 term

Baluni, 1979

Alternate approach: At hadronic level, use field

redefinitions to eliminate

spurious terms

WH, van Kolck, in progress

Obtain low energy EFT using chiral symmetry

$$SU_L(2) \times SU_R(2) \sim SO(4)$$

• $\bar{q}i\gamma_5q$ is 4th component of SO(4) vector

$$P = (\bar{q}\boldsymbol{\tau}q, \bar{q}i\gamma_5q)$$

• $\bar{q}i\gamma_5\tau_3q$ is 3rd component of SO(4) vector

$$S = (\bar{q}i\gamma_5 \boldsymbol{\tau}q, \bar{q}q)$$

Other sources of T violation

quark chromo-EDM:
$$\frac{i}{2} \bar{q} \Big(\check{d}_s + \check{d}_v \tau_3 \Big) \gamma_5 \sigma_{\mu\nu} G^{\mu\nu} q$$

quark EDM:
$$\frac{i}{2} \bar{q} \big(d_s + d_v \tau_3 \big) \gamma_5 \sigma_{\mu\nu} F^{\mu\nu} q$$

and Weinberg operator, 4-quark interactions...

Question: What is most general T-violating effective chiral Lagrangian given various quark-level sources?

T violation from θ term (pions only)

$$\mathcal{L}_{TC,\pi}^{(0)} = \frac{1}{2} D_{\mu} \pi \cdot D^{\mu} \pi + S_4[\pi, 0]$$

$$D_{\mu} = D^{-1}\partial_{\mu}, D = 1 + \pi^2/4f_{\pi}^2,$$

$$S_4[\boldsymbol{\pi}, 0] = 2m_{\pi}^2 f_{\pi}^2 (1 - \boldsymbol{\pi}^2 / 4f_{\pi}^2) / D$$

$$\mathcal{L}_{T,\pi} = S_3[\boldsymbol{\pi}, 0] \Big(1 + \alpha_1 (D_{\mu} \boldsymbol{\pi})^2 + \alpha_2 S_4[\boldsymbol{\pi}, 0] + \dots \Big)$$

$$S_3[\boldsymbol{\pi},0] = \bar{h}_0 \pi_3/D, \qquad \bar{h}_0 = \mathcal{O}(\bar{\theta} \tilde{m} M_{QCD}^3/f_\pi),$$
 $\alpha_i = \mathcal{O}(1/f_\pi^2 M_{QCD}^2)$

 $\mathcal{L}_{T,\pi}$ can be eliminated by redefining π :

$$\pi_i \to \pi_i + D\left(\sigma^{(2)}\pi_i + \sum_{a=0}^{\infty} \delta^{(2a)}\pi_i\right)$$

$$\delta^{(2a)}\pi_{i} = \frac{D}{4f_{\pi}^{2}m_{\pi}^{2}} \left[D_{\mu}\pi_{i}D^{\mu}\boldsymbol{\pi} \cdot \delta^{(2a-2)}\boldsymbol{\pi} - (D_{\mu}\boldsymbol{\pi})^{2}\delta^{(2a-2)}\pi_{i} + \frac{D}{2(D-1)}\pi_{i}D_{\mu}\boldsymbol{\pi} \cdot D^{\mu}\delta^{(2a-2)}\boldsymbol{\pi} \right]$$

$$\delta^{(0)}\pi_i = \bar{h}_0 \delta_{i3}/(2m_\pi^2), \quad \sigma^{(2)}\pi_i = \delta^{(0)}\pi_i \{\alpha_1(D_\mu \pi)^2 + \alpha_2 S_4[\pi, 0]\}$$

T violation from $\bar{\theta}$ term (pions+nucleons)

Leading order:

$$\mathcal{L}_{TC,\pi N}^{(0)} = \mathcal{L}_{TC,\pi}^{(0)} + \bar{N}iv \cdot DN - \frac{g_A}{f_\pi} \bar{N} S_\mu \boldsymbol{\tau} \cdot D^\mu \boldsymbol{\pi} N + \dots$$

$$D_{\mu} = \partial_{\mu} + i \boldsymbol{\tau} \cdot (\boldsymbol{\pi} \times D_{\mu} \boldsymbol{\pi}) / 4 f_{\pi}^2$$
 for nucleon

$$\mathcal{L}_{T,\pi N}^{(1)} = -\frac{\bar{g}_0}{D} \bar{N} \boldsymbol{\tau} \cdot \boldsymbol{\pi} N + \frac{\bar{g}_1}{D} \pi_3 \bar{N} N$$

$$\bar{g}_0 = \mathcal{O}(m_*\bar{\theta}/f_\pi), \quad \bar{g}_1 = \mathcal{O}(\tilde{m}\bar{\theta}/f_\pi)$$

 \bar{g}_0 term generated by isoscalar $\bar{\theta}$ term – gives nucleon EDM contribution

 \bar{g}_1 term ($\sim S_3[\pi,0]S_4[0,N]$) along with terms induced on $\mathcal{L}_{TC,\pi N}^{(0)}$ by $\delta^{(0)}\pi_i$ can be eliminated:

$$\pi_i \to \pi_i + \ldots + \frac{D\bar{g}_1}{2m_\pi^2} \delta_{i3} \bar{N}N + D\bar{N}\epsilon^{(1)} \pi_i N$$

$$\epsilon^{(1)}\pi_{i} = \frac{\lambda D}{16f_{\pi}^{4}m_{\pi}^{2}} \left[\varepsilon_{jk3}v_{\mu}\tau_{j} \left(\pi_{k}D^{\mu}\pi_{i} - \frac{D}{2(D-1)}\pi_{i}D^{\mu}\pi_{k} \right) - 4g_{A}f_{\pi}D_{\mu}\pi_{i}S^{\mu}\tau_{3} \right]$$

And so on. . . Field redefinition is perturbative, i.e. each term contributes extra power of $\sim m_\pi/M_{QCD}$

T violation from quark EDM & chromo-EDM

Under chiral symmetry:

quark chromo-EDM term same as $\bar{\theta}$ term quark EDM term has four separate pieces

$$\sim S_3$$
 , $\sim P_4$, $\sim S_3 F_{34}$, $\sim P_4 F_{34}$

 $F_{34} =$ 34-comp. of antisymmetric rank 2 SO(4) tensor

Quark chromo-EDM gives same terms in low-energy EFT as $\bar{\theta}$ term Quark EDM gives all previous terms plus new terms, including

$$\bar{g}_2\pi_3\bar{N}\tau_3N$$

Can \bar{g}_2 term be eliminated? If so, this has consequences for neutron and deuteron EDMs:

Then one-nucleon physics is identical for above sources

⇒ Look to two-nucleon systems, i.e. deuteron to distinguish

Application: nucleon electric dipole form factor

From $\bar{\theta}$ term in LO:

WH & van Kolck, 2005

Form factor from T-viol. EM current:

$$J_{ed}^{\mu}(q) = 2\left(F_D^{(0)}(-q^2) + F_D^{(1)}(-q^2)\tau_3\right) \times (S^{\mu}v \cdot q - S \cdot qv^{\mu})$$

Form factor contributions:

$$F_D^{(0)}(Q^2) = d_0$$

$$F_D^{(1)}(Q^2) = d_1 - \frac{eg_A \bar{g}_0}{12\pi^2 f_\pi} F\left(\frac{Q^2}{(2m_\pi)^2}\right)$$

$$F(x) = \frac{3}{2}\sqrt{1 + \frac{1}{x}} \ln\left(\frac{\sqrt{1 + 1/x} + 1}{\sqrt{1 + 1/x} - 1}\right) - 3$$

Conclusions/Outlook

- The T-violating effective chiral Lagrangian consists of all terms consistent with the chiral symmetry properties of the quark-level sources of T violation
- Field redefi nitions provide a method of avoiding inclusion of terms in low-energy EFT which cause vacuum instability
- T-violating effective chiral Lagrangian allows accurate calculation of electric dipole moment/form factor of nucleon (c.f. WH, U. van Kolck, PLB **605**, 273 (2005) and WH, C.M. Maekawa, U. van Kolck, in progress) and deuteron